Large-Eddy simulation of a certification burner with fully coupled conjugate heat transfer

GRT ACCORT – Centrale Supelec 22/11/2018

Ph.D. student: Lancelot BOULET

Advisors: Vincent MOUREAU

Ghislain LARTIGUE

Collaboration: SAFRAN Helicopter Engines

(N. CHAUVET, S. DIDORALLY)

Motivation

Context

- Manufacturers need to certify equipments in terms of fire resistance (housing, fastening engine, ...)
- Certification: the apparatus needs to be submitted [1]
 - to a kerosene / air burner
 - during a fixed time (5 to 15 minutes)
 - with a standardized flame: 1100°C (≈1300K) and 116 kW/m²
 - This can be VERY expensive...

Purpose

- Model fire resistance tests with Large-Eddy Simulation (LES)
- Improve comprehension of phenomena involved in tests
 - Characterize inhomogeneities inside the torch (burnt gases, droplets)
- > Perform many **NUMERICAL** certification tests
- > Try to minimize the number of **REAL** certification tests

Difficulties

- Very different time and space scales
- Multi-physics and complex geometry
- Very few studies

Liquid-fuel burner

Large-Eddy Simulation

- [1] T. Poinsot, D. Veynante (2005). RT Edwards
- [2] B. Abramzon, W.A. Sirignano (1989). Int J Heat Mass Transfer
- [3] P. Dagaut, M. Cathonnet (2006). Progress Energy & Comb Sci
- [4] L. Guedot (2014). ERCOFTAC ETMM 10

❖ Large-Eddy Simulation [1]

- > Filter Navier-Stokes equations
- > Transport of large scales
- ➤ Modelling of small scales
- Well adapted to unsteady phenomena

❖ Models for combustion in aero engines

- > Two phase flow (liquid fuel) [2]
- > Detailed chemistry (a lot of reactions) [3]
- Crude models for heat transfer.
 - Few studies with Conjugate Heat Transfer (CHT)
 - No Radiative Heat Transfer

Objectives of the present study

- Progress on HT modelling
 - Convection Conduction
 - Radiation

Conjugate **Heat Transfer**

CHT + radiation

- Validate the models
- Investigate their impact in an industrial system

MERCATO combustion chamber [4]

I. Model and coupling strategies

II. Academic validation

III. Torch flame results

Fluid solver: YALES2 [1]

- Low-Mach Number Navier-Stokes equations
- Finite Volumes on unstructured meshes
- Dedicated to DNS & LES of Multiphysics Flows
 - Turbulence
 - Combustion
 - Two-phase flows (droplets, bubbles, liquid sheets, ...)
- ❖ High-order schemes (centred 4th) → low dissipation and dispersion
- ❖ In house linear solver: Deflated PCG [2] for symmetric systems
- ightharpoonup Designed for HPC: scale-up to 10^{10} cells and 10^{5} cores
- More than 200 users across Europe, both industry and academic
- ❖ More than 80 publications related to YALES2 (Google Scholar)
- 2011 IBM Faculty award

3 main maintainers

- V. Moureau
- ➤ G. Lartigue
- P. Bénard
- **❖** 430 000 lines of objectoriented f90
- Python interface
- ❖ Git
- **❖** Portable on all the major platforms + ARM, Xeon Phi,

IOs

- Gambit/Fluent
- Partitioned HDF5
 - Ensight
 - AVBP

Complex Chemistry

- Tabulated chemistry
- Complex chemistry
 - Stiff integrators
 - Dynamic load balancing

Mesh Management

- 1D, 2D, 3D
- Partitioning
- Load balancing
 - Refinement

Linear Solvers

- Deflated PCG
- BICGSTAB2
- Residual recycling

YALES2 Solvers

analysis

Data

- Probes
- Postproc. variables
 - High-order filters
 - FFT, POD, DMD
 - Statistics

Numerics

- Particles
- Level sets
- 4-th order FV schemes

Solvers list

- Scalar solver (SCS)
- Level set solver (LSS)
- Lagrangian solver (LGS)
- ➤ Incompressible solver (ICS)
- Variable density solver (VDS)
- Spray solver (SPS)
- Magneto-Hydrodynamic solver (MHD)
- ➤ Heat transfer solver (HTS)
- Chemical reactor solver (CRS)
- Linear acoustics solver (ACS)
- Mesh movement solver (MMS)
- ➤ ALE solver (ALE)
- Radiative HT solver (RDS)
- Explicit compressible solver (ECS)
- Implicit compressible solver (CPS)
- Immersed boundary solver (IBS)
- Darcy solver (DCY)
- Granular flow solver (GFS)
- **>** ...

PRECCINSTA Burner
2.6 billion cells, 16384 cores of BG/P

More details:

- www.coria-cfd.fr
- www.youtube.com/user/CoriaCFD

- ❖ Computation of the PRECCINSTA semi-industrial burner with YALES2
- **\Leftrightarrow** Quasi-DNS ($\Delta x = 50 \mu m$ in the flame) with complex chemistry (Lu17 scheme)
- **❖** Including Wall Heat Losses
- **❖** 877M cells / 10′000 processors

 $Y_{OH} [-]$ = 4.0e-03

❖ LES of a Low-NOx combustor (courtesy Safran HE) with 376M cells

LES of the atomization and combustion of a kerosene injector with 320M cells

MERCATO - 320M cells - 4096 procs OCCIGEN

Time: 0.00 ms

U (m/s)

Some studies with

❖ Project led by S. Mendez and F. Nicoud at IMAG, Montpellier

The YALES2 Team

Coupling strategy: solver interactions

- [1] V. Moureau (2011). Combustion & Flame
- [2] http://www.cerfacs.fr/globc/PALM WEB/
- [3] M.B. Giles (1997). Int. journal for num methods in fluids [4] F. Duchaine (2009). Int Journal of Heat & Fluid Flow
- [5] A. Felippa (2001). Comput. methods in appl mech & eng
- [6] M.F. Modest (2013). Academic Press

- Fluid and Solid have to communicate Solver: YALES2 [1] Coupling: OpenPALM [2]
- What is exchanged? [3,4]
- Fluid side: Flux is sent
- **Solid** side: **T** is sent
- How? Parallel Asynchronous Coupling Strategy [4,5]

Emission spectrum (CH4/air flame, 2160K)

- Importance of radiation in combustion
 - High temperatures
 - Burnt gases: high absorption power
- Solve Radiative Heat Transfer Equation [6]
 - Spectral quadrature
 - Angular quadrature (DOM)
 - Spatial discretization SAME MESH as Fluid

Radiative solver: gas properties

- [1] Goody (1989). J. Quant. Spectro. & Radiative Transfer
- [2] Lacis & Oinas (1991). J. Geophysical Research
- [3] Liu (2000). Int. J. Heat Mass Transfer
- [4] Rivière & Soufiani (2012). Int. J. Heat Mass Transfer
- [5] Rivière (1992). J. Quant. Spectro. & Radiative Transfer

YALES2 solves the RTE:

- For a transparent media (surface to surface)
- For a participating media in reordered k-space
- SNB-CK model based on EM2C latest database [1,2,3,4]
- Includes CO2, H2O, CO & CH4
- No SGS Turbulent-Radiation Interaction
- Quadrature methods
 - Gauss-Lobato (7pts and 20pts)
 - Gauss-Legendre (2pts, 4pts and 7pts)
 - ❖ Gauss-Radau [5] (7pts)
- Optimized Brent Method to solve for k* for each spectral quadrature point
- Vectorized instructions to accelerate computations
- Low impact on CPU consumption

Radiative solver: DOM

- * YALES2 solves the RTE with a DOM method
- ❖ In 2D: S4 (2 directions/quadrant) → S32 (16 directions/quadrant)
- In 3D: S4 (3 directions/octant)
- All directions are solved simultaneously:
 - without scattering: directions are decoupled (efficient)
 - with scattering: only minor modifications to the solver
- The RTE is discretised with a 4th order centred method with 10% upwinding
- Linear solver: optimized and fully vectorized parallel BiCG-Stab(2) [1]
- Very efficient: uses the SAME MESH as the fluid (tens of millions of cells)

HPC: performances of YALES2 radiative module

I. Model and coupling strategies

II. Academic validation

III. Torch flame topology

[3] Meija (2017). Proceedings Comb Inst [4] Meija (2018). Comb & Flame

Academic validation test-case: INTRIG

❖ INTRIG: experimental combustion chamber [1,2,3,4]

- Mixture: CH₄ and Air
- Laminarized flow
- Combustion chamber:
 - owns a cylindrical steel Bluff-body
 - stabilizes a V-flame

❖ Numerical parameters

- Fluid: air at $u \approx 1m/s$ (Re = 584)
- \triangleright Flow with Von-Karman streets (40Hz)
- > 2D Mesh: 630 000 tetrahedrons
 - $70\mu m$ in the flame and the solid
 - Prism layers of $20\mu m$ at interface

Interest

- Validate CHT & radiation strategies
- Use radiation // present studies [1,2]

Academic validation test-case: INTRIG

- [1] Miguel-Brebion (2016). Comb & Flame [2] Xavier (2017). JFM
- [3] Meija (2017). Proceedings Comb Inst [4] Meija (2018). Comb & Flame

❖ INTRIG: experimental combustion chamber [1,2,3,4]

- ➤ Mixture: CH₄ and Air
- Laminarized flow
- Combustion chamber:
 - · owns a cylindrical steel Bluff-body
 - stabilizes a V-flame

❖ Numerical parameters

- Fluid: air at $u \approx 1m/s$ (Re = 584)
- \triangleright Flow with Von-Karman streets (40*Hz*)
- > 2D Mesh: 630 000 tetrahedrons
 - $70\mu m$ in the flame and the solid
 - Prism layers of $20\mu m$ at interface

Interest

- ➤ Validate CHT & radiation strategies
- Use radiation // present studies [1,2]

Academic validation test-case: Influence of cylinder emissivity

❖ 2 types of flame stabilisation

- $\triangleright \varepsilon = 1$: downstream stabilized
 - Low T & little recirculation zone
- $\triangleright \varepsilon = 0$: upstream stabilized
 - High T & large recirculation zone

 $\varepsilon = 1.0$

❖ Angle profile

- \triangleright Gap between $\varepsilon = 0.15$ and $\varepsilon = 0.1$
- Good comparison with [1]

x [mm]

Academic validation test-case: Influence of transparent & participative medium

2 possibilities of interactions for RHT

- > Transparent medium: walls
 - Like in [1]
- Participative medium: walls + burnt gases
 - New approach

Impact on the cylinder T

- > Similar behaviour
- ightharpoonup At $\varepsilon = 0$: $T = T_{adiab}$
- \triangleright Difference up to 30K for high ε

Wall operation of the second of the second

Is this T difference really important?

- ➤ In aeronautic field: YES!
- > Prediction of T on turbine blade
 - Range of ε : between 0.6 and 0.9 [3]
- \triangleright 7 T of 30K \searrow Time Life by a factor of 9 [2]

High influence of Participative gases at high arepsilon

Academic validation test-case: Influence of transparent & participative medium

2 possibilities of interactions for RHT

- > Transparent medium: walls
 - Like in [1]
- Participative medium: walls + burnt gases
 - New approach

Impact on the cylinder T

- Similar behaviour
- ightharpoonup At $\varepsilon = 0$: $T = T_{adiab}$
- \triangleright Difference up to 30K for high ε

- > In aeronautic field: YES!
- Prediction of T on turbine blade
 - Range of ε : between 0.6 and 0.9 [3]
- \triangleright 7 T of 30K \searrow Time Life by a factor of 9 [2]

High influence of Participative gases at high arepsilon

Academic validation test-case: Influence of transparent & participative medium

2 possibilities of interactions for RHT

- > Transparent medium: walls
 - Like in [1]
- Participative medium: walls + burnt gases
 - New approach

Impact on the cylinder T

- Similar behaviour
- \triangleright At $\varepsilon = 0$: $T = T_{adiah}$
- \triangleright Difference up to 30K for high ε

- ➤ In aeronautic field: YES!
- > Prediction of T on turbine blade
 - Range of ε : between 0.6 and 0.9 [3]
- \triangleright 7 T of 30K \searrow Time Life by a factor of 9 [2]

High influence of Participative gases at high arepsilon

Academic validation test-case: Influence of angular discretisation

I. Model and coupling strategies

II. Academic validation

III. Torch flame analysis

Torch modeling strategy

❖ Multi-physic aspects

Spray

Evaporation

Flame

Heat transfers

Convection

Conduction

Radiation

1. Adiabatic

Droplet diameter

Turbulator

2. CHT + Radiation

❖ Numerical parameters

- ➤ DOM: S4 → 24 directions
- > Spectral quadrature: Gauss-Lobato with 7 pts
- \rightarrow dt fluid = 4.5 μ s dt solid = 29.2 μ s

Torch modeling strategy

Spray

Evaporation

Flame

Heat transfers

Convection

Conduction

Radiation

❖ Numerical parameters

- ➤ DOM: S4 → 24 directions
- > Spectral quadrature: Gauss-Lobato with 7 pts
- \rightarrow dt_fluid = 4.5 μ s dt_solid = 29.2 μ s

Geometry modeling

Domain & mesh

Turbulator:

Front

Rear

Simulation domain $\approx 3m^3$

Fluid:

- From 0.4 to 2 mm
- Cell count: 40 M tets

Solid:

- From 0.2 to 1 mm
- Cell count: 140 M tets thinness of the cone

CHT strategy: variables & solver interactions

- [2] V. Moureau (2011). Combustion & Flame
- [3] http://www.cerfacs.fr/globc/PALM WEB/
- M.B. Giles (1997). Int. journal for num methods in fluids
- F. Duchaine (2009). Int Journal of Heat & Fluid Flow

Fluid and Solid have to communicate

Solvers: YALES2

Coupling: OpenPALM

What is exchanged?

Adopted here [4,5]

- Fluid side: Flux is sent
- **Solid** side: **T** is sent

How is it exchanged? [5,6]

Adopted here **Parallel Coupling Strategy Sequential Coupling Strategy** n n Solid

Coupling strategy: synchronisation time

- Synchronous coupled simulation:
 - Between exchange, the same physical time is computed by each solvers
 - Time step of solid larger than time step of fluid Waste of CPU time Study transient state
- Asynchronous coupled simulation:
 - Between exchange, different physical times are computed by each solvers
 - Bigger physical time can be computed in the solid Waiting time reduced
 Study converged state

Coupling strategy: improving convergence

- To reach steady-state
 - The heat capacity of the solid is artificially lowered
 - And then reset to its real value same steady state obtained much faster

Coupling strategy: including Radiation

- Radiative solver invoked in the fluid phase before each coupling event
- At each 32 iterations, i.e. each 144µs.
- On a 40M cells mesh, with S4 and 7pts quadrature
- Non-symmetric and ill-conditioned lienar system
- BiCG-Stab(2) with ~1'200M DoF
- On 1024 processors...
- This represents ~40% of total CPU time

For simulations of transparent media, radiation = 2% of total CPU time

Topology of the flame: adiabatic case

- Corner recirculation zone
- High values of fuel consumption where the flame is the strongest
- Large-scale flame wrinkling due to the turbulator
- Individual droplet evaporation at the wall and group droplet evaporation in the center
- Gaseous kerosene found at the wall due to large droplets crossing the flame

Topology of the flame inside the torch Analysis of hot air plumes above the cone

\Leftrightarrow Rendering of high values of ω_T during 20ms

- Wrinkling due to the turbulator
- Isolated hot spots: combustion of droplets

❖ Rendering of T in the air

- CHT + Radiation in participative medium
- ightharpoonup Upper side: natural convection driven by T gradient at the torch wall ($R_a=6.10^6$)
- ➤ Lower side: quite stable stratification

Calculation time: 6h Computer: Occigen

Topology of the flame: adiabatic vs CHT

- **Droplet evaporation starts** upstream of the flame
- w/ CHT: consumption at the wall & the outlet
- w/ CHT: presence of gaseous kerosene on the walls
- Flame lift-off more important w/o CHT
 - Hotter recirculation zones
- Large-scale flame wrinkling unaffected by CHT

 $\dot{\omega}_{H_s}$

T

Hot air plume above the cone

 $\dot{\omega}_{Y_{kero}}$

 Y_{kero}

Instantaneous temperature fields

> Seems to be lower with participative gases

Mean temperature at the outlet

➤ Adiabatic: too high values

Transparent: same level as adiab. case

 \triangleright Participative: $\approx 200 \, K$ lower -> almost at ISO values

Too simple chemistry (2 reactions)

• Any models for soot formation

Fluxes at walls

Paroi	Interne		Externe	
Pertes thermiques	Convection	Rayonnement	Convection	Rayonnement
Transparent (%)	90.6	-9.4	15.1	84.9
Participative (%)	62.6	37.4	11.3	88.7

External wall temperatures

Conclusion & perspectives

❖ INTRIG allowed to validate CHT & Radiation strategies

- ➤ Numerical results well reproduce with literature
- Number of ang. directions can have an impact when doing CHT

❖ In hot gases, influence of participative medium is vital

- > To lower the gases temperature
- > To predict good levels of temperature at the outlet of the torch

❖ What to do next?

- \triangleright Comparison of T & ϕ on plane plate with exp. results
- > Simulate a real certification test with engine envelope
- Include soot model and scattering

See you on December 20th at CORIA for Lancelot Ph.D. defense!

