

Caractérisation expérimentale des arcs de foudre dans un contexte aéronautique

Rafael SOUSA MARTINS¹, Clément ZAEPFELL¹, Philippe LALANDE¹, Philippe RIVIERE² et Anouar SOUFIANI²

JERT 2018 - vendredi 23 novembre 2018

¹ONERA – Unité Foudre, Plasma et Applications (FPA) ²Laboratoire EM2C – CNRS UPR288, CentraleSupélec

- I. La foudre dans un contexte aéronautique
- II. Caractérisation de l'arc libre :
 - spectroscopie d'émission
- III. Caractérisation de l'interaction arc/matériau :
 - thermographie infrarouge et calcul du flux radiatif
- IV. Conclusion et perspectives

I. La foudre dans un contexte aéronautique

- II. Caractérisation de l'arc libre :
 - spectroscopie d'émission
- III. Caractérisation de l'interaction arc/matériau :
 - thermographie infrarouge et calcul du flux radiatif
- IV. Conclusion et perspectives

I. Context: Lightning Strike

Lightning Overview

- Distribution of electric charges in the cloud
 - → Significant atmospheric electric field
- Lightning : high current transient electrical discharge
 - \rightarrow Path length of few km / current of hundreds of kA

rate : 14 kfps exposure : 71µs

I. Context: Lightning on aircraft

I. New challenges: fuel saving

- Modern aeronautical construction
- Carbon fiber composite material
- Airbus A350XWB and Boeing 787 Dreamliner (~50% weight)
- Composites vs Metal: low thermal and electrical conductivity
 - → Higher constraints: Protection (metallic mesh)
 - Increase of weight and costs

- Certification : Complexes and costly laboratory tests
- Objectives: Characterization of lightning arcs and arc-material interaction
 - Understanding of lightning direct effects
 - Reliable and predictive models
 - Experimental database for model and code validations

→ Optimization of lightning protection systems

ONER

I. Lightning arc: simplified picture

Characteristics of lightning arcs

- High current → Joule heating; temperature increasing
- Significant shock wave; pressure increasing within arc
- Many physical phenomena: electromagnetism, fluid mechanics, radiative transfers, ...

- I. La foudre dans un contexte aéronautique
- II. Caractérisation de l'arc libre :
 - spectroscopie d'émission
- III. Caractérisation de l'interaction arc/matériau :
 - thermographie infrarouge et calcul du flux radiatif
- IV. Conclusion et perspectives

II. Experimental setup: GRIFON generator

Equivalent electrical circuit

Characteristics:

- C = 208 µF,
- $R = 193 \text{ m}\Omega$
- L~1µH

For a 100 kA current wave:

- V_{CHARGE} = 27 kV
- E_{STOCKED} ~ 75 kJ

:-0.273 ms

II. Experimental setup: Electrodes

• Length *d* adjustable between 60 à180 mm (triggering: ignition wire)

ONERA

II. Experimental setup: current waveform

The current is the main quantity that drives all others properties

Parametric study: 5 peak levels (D-wave and 4 fractions)

- I_{peak} = 10 kA to 100 kA
- t_{peak} = 13.5 µs @ 100 kA; 21.3 µs @ 10 kA
- Reproducibility in 40 shots: 0.3 kA maximum standard deviation at 100 kA

ONERA

II. Diagnostics optiques de l'arc

Spectroscopie d'émission

Caractérisation des grandeurs thermodynamiques intensives

FM20

Spectroscopie d'émission

- Caractérisation spatio-temporelle
- Détermination des grandeurs intensives (température, densité électronique et pression)
- Zone spectrale : sensibilité à la température (20 à 40 kK) → 3 plages spectrales de 430 à 585 nm
- Choix de la méthode : considération de l'épaisseur optique (milieu mince ou pas?)

 $\tau = \kappa . l$ \rightarrow Longueur des cordes : 1 à 6 cm

Spectroscopie d'émission

- Caractérisation spatio-temporelle
- Détermination des grandeurs intensives (température, densité électronique et pression)
- Zone spectrale : sensibilité à la température (20 à 40 kK) → 3 plages spectrales de 430 à 585 nm
- Choix de la méthode : considération de l'épaisseur optique (milieu mince ou pas?)

 $\tau = \kappa . l$ \rightarrow Longueur des cordes : 1 à 6 cm

• Coefficient d'absorption (à l'ETL) $\rightarrow f(T, N_e)$

$$\kappa_{line}(\lambda, T, N_e) = \frac{\lambda^5 (e^{hc/\lambda kT} - 1)}{2hc^2} \sum_{line} \frac{hc}{4\pi} \left(\frac{g_u A_{ul}}{\lambda_{line}}\right) \frac{N_o(T, N_e)}{Q(T)} e^{-\frac{E_u}{kT}} f(\lambda - \lambda_{line}, T, N_e)$$

Épaisseur optique > 1 → milieu **non-optiquement mince** ! Interdit les méthodes classiques (inversion d'Abel, droite de Boltzmann, etc.)

Equation du transfert radiatif

Alternative pour un milieu non-optiquement mince → Résolution de l'ETR par couche :

Spectre calculé :

$$I_{calc}(\lambda) = I_m(\lambda) * I_{slit}(\lambda)$$

Minimisation par moindre carrés :

$$R(T, N_e) = \left[\sum_{\lambda=\lambda_i}^{\lambda_f} \left(I_{\lambda}^{meas} - I_{\lambda}^{calc}(T, N_e)\right)^2\right]^{1/2}$$

Critère pour l'erreur du paramètre :

ONERA

> Résolution de l'ETR par couche : exemple d'ajustement

EM2C

Moyenne des résultats sur les 3 plages spectrales (100 kA)

JERT2018 - Journées d'études en rayonnement thermique (23/11/2018)

> Comparaison pour différents niveaux de courant : $t = 9 \mu s$

- N_e : sensibilité importante au courant

Conductivité électrique (100 kA)

Déduites à partir des propriétés d'un plasma d'air à l'équilibre (D'Angola et al. 2008) $\sigma = f(T, P)$

- Profils presque constants dans le canal (peu d'effet de la pression)

- Résultats en accord avec les mesures électriques (écart entre 9 à 50%)

Sousa Martins et al. 2016 JphysD

- I. La foudre dans un contexte aéronautique
- II. Caractérisation de l'arc libre :
 - spectroscopie d'émission
- III. Caractérisation de l'interaction arc/matériau :
 - thermographie infrarouge et calcul du flux radiatif
- IV. Conclusion et perspectives

Mécanismes et flux incidents

Objectives :

- > Estimer les flux incidentes lors du foudroiement par méthode inverse
- > Corréler les flux estimés avec des paramètres d'arc \rightarrow T , P , I
 - Modélisation du flux radiatif \rightarrow T , P
 - Modélisation du flux électrique par l'analyse de la gaine \rightarrow l

Diagnostic : thermographie infrarouge

Exemple mesure : Aluminium 1.2 mm suite à une onde D (100 kA)

ONERA

THE FRENCH AEROSPACE LAB

Diagnostic : thermographie infrarouge

Exemple mesure : Aluminium 1.2 mm suite à une onde D (100 kA)

Mesures thermographie-IR

Exemple profile radial : Aluminium 1.2 mm

Modélisation thermique/électrique

Problème direct \rightarrow Input : $q_1(t, r) + q_2(t, r)$

Output : *T*(*t*, *r*, *z*)

Equation de la chaleur :

$$\rho C_p \frac{d}{dt} T = \nabla . \lambda \nabla T + P_{Joule}$$

 $\frac{d}{dt}V = \nabla \cdot \sigma \nabla V = 0$

 $P_{Ioule} = \sigma |\nabla V|^2$

Code thermique : Calcul de T en tout point du matériau (2D axis) - volume finis en schéma explicite Z

Equation de Poisson :

Code électrique : Calcul de V en tout point du matériau \rightarrow 2D axis en volume finis en schéma implicite :

méthode des directions alternées (matrix tri-diag au lieu de penta-diag)

q(t,r,z=0)

 $\mathsf{T}_{1,1}$

dr

 T_{21}

dz

Ajustement des mesures : obtention des flux

Flux total comme somme de deux bi-exponentiel :
$$q(r,t) = P_0 \left(e^{-\frac{t}{\tau_1}} - e^{-\frac{t}{\tau_2}} \right) \frac{2}{\pi^{3/2} r_{arc}^2} e^{\left(-\left(\frac{r}{rarc} \right)^4 \right)}$$

 $q_{elec}(\mathbf{r}, \mathbf{t}) \rightarrow P1$, \mathcal{T}_1 , \mathcal{T}_2
 $q_{rad}(\mathbf{r}, \mathbf{t}) \rightarrow P2$, \mathcal{T}_3 , \mathcal{T}_4
Normalisé en $2\pi r dr$

Conclusion : - Bon ajustement des profils mesurés

- Atteint de T_{melting} pour le cas Al à 100 kA
- Essais sur matériaux avec T_{melting} plus élevée exemple : titane et tungstène

EM2C

Modélisation du flux électrique

Modèle Benilov et al. (de 1995 à 2016 : plusieurs dizaines de papiers dans IOP dans la problématique HID lamps)

CentraleSupélec

Utilisation des champs de température et pression mesurés par spectroscopie d'émission

EM2C

CentraleSupélec

Utilisation des champs de température et pression mesurés par spectroscopie d'émission

$$q_{rad_{\lambda}}(r) = \int_{\theta=0}^{\frac{\pi}{2}} \int_{\phi=0}^{2\pi} I_{\lambda}(r,\theta,\phi) \cos\theta \sin\theta \, d\theta d\phi$$

Avec:
$$I_{\lambda}(r,\theta,\phi) = -\int_{0}^{s_{max}} \kappa_{\lambda}(s) I_{\lambda}^{0} \exp\left(-\int_{0}^{s} \kappa(s') ds'\right) ds$$

Absorption coefficient from High Temperature Gas Radiation (HTGR) database from EM2C

Spectral lines	bound-bound	Atomic : N, O, N ⁺ , N ⁺⁺ , N ⁺⁺⁺ , O ⁺ , O ⁺⁺ , O ⁺⁺⁺ Molecular : 19 e ⁻ systems (N ₂ , N ₂ ⁺ , NO, O ₂)
Continuum	bound-free	Photoionization : N, O, N ₂ , O _{2,} NO Photodetachment : N ⁻ , O ⁻ Photodissociation : O ₂
	free-free	Bremsstrahlung : lon-electron, atom-electron and molecule-electron

S. Chauveau et al. (2003) JQSRT

Résultat à 14 us :

- Coefficient d'absorption : 4 millions de points spectraux pour chaque couple T et P
- Programme parallélisé : hydride de MPI et OpenMP

Flux radiatif arrivant sur la paroi à différentes instants

- I. La foudre dans un contexte aéronautique
- II. Caractérisation de l'arc libre :
 - spectroscopie d'émission
- III. Caractérisation de l'interaction arc/matériau :
 - thermographie infrarouge et rayonnement
- IV. Conclusion et perspectives

Conclusion et perspectives

Conclusion :

- Premières caractérisations expérimentales fines de l'arc de foudre impulsionnel
- Caractérisation de l'arc libre
 - > Caractérisation spatio-temporelle de la température et de la pression dans l'arc
 - > Résolution de l'ETR dans un plasma non-optiquement mince
- Caractérisation l'interaction arc-matériau
 - > Résolution du problème inverse et l'exploitation des mesures IRT : résultats encourageants
 - > Résolution de l'équation de transfert et calcul du flux radiatif théorique

Perspective:

- Poursuivre de l'étude sur différente matériaux, épaisseurs et niveau de courant (tungstène et titane)
- Estimation des flux par mesures IRT + estimation théorique

Je vous remercie de votre attention !!!

Ajustement des positions de l'onde de choc par fonctions du type $r(t) = \alpha t^{\beta}$

Densité à l'intérieur du choc y_b Equation des rayons Déflexion des rayons Profil de densité une camera $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{n_0} \int_{y}^{R} \frac{\partial n}{\partial r} \frac{y}{\sqrt{r^2 - y^2}} \,\mathrm{d}r$ ρ_{MAX} BACKGROND x ρ_0 Relation de Gladstone-Dale ARC ho_{MIN} $n-1 = K\rho$ WAVE $R R + \varepsilon$ FRONT r_{ARC} δ $R+\varepsilon$ **background** \rightarrow **pixel**: $y_b(y) = R \sin(\alpha - \theta) + \frac{2yd}{\pi} \left| \frac{n_{MAX} - n_{MIN}}{n_{MAX} - n_{MIN}} \right|^{\frac{1}{2}}$ $\frac{\mathrm{d}r}{\sqrt{r^2 - y^2}}$ $\frac{n_{MAX}-n_0}{\varepsilon}$ $\mathrm{d}r$ wave front 13.4 mm Exemple de reconstruction de la distorsion de l'images 3.8 mm

Référence

Simulation

EM20

Régression linéaire pour l'étude de la résistance linéique

JERT2018 - Journées d'études en rayonnement thermique (23/11/2018)

EM2C

Fonction de l'appareil de le spectromètre (raie laser HeNe à 632.816 nm)

Temps d'établissement de l'ETL (Equilibre thermodynamique locale)

$$t_{ETL} = \frac{1}{\bar{K}_{cin}\bar{v}_{e-h}}$$
 (B. Chéron (2001); B. Peyrou (2012))

 \bar{K}_{cin} : Taux d'énergie transférée par l'électron lors d'une collision

 \bar{v}_{e-h} : Fréquence de collision élastique entre les particules lourdes et les électrons

- Pour 10 000 K et 1 bar : 0.6 µs
- Pour 30 000 K et 10 bar : **0.9 ns**

Ecart à l'équilibre de 10% par effet du champ électrique (B. Peyrou (2012))

Calcul à 10 µs (environ 28 kK, 25 bar) : $r_{col} \sim 0.1 \Omega/m$ et l ~ 95 kA $\rightarrow E_{int} \sim 9.5 \text{ kV/m}$

A 30 000 K et 10 bar le champ pour un écart à l'ETL de 10% = 190 kV/m

Étude de la sensibilité des raies à la température

Exemples d'ajustement en différentes plages spectrales

ONERA

THE EPENCH AEPOSPACE IA

Exemples de traitement H-alpha

Relation N_e avec w_s (Kepple and Griem 1968) :

$$N_e = \left(\frac{w_{\rm s} \times 10^{18}}{2.5\alpha_{1/2}}\right)^{3/2}$$

$$\overline{N_e}_{RTE}(t) = \frac{1}{\pi r_{arc}^2} \int_{0}^{r_{arc}} 2\pi r N_e(t,r)_{RTE} dr$$

Time (µs)	Electron density (10 ¹⁷ cm ⁻³) from Ha- line (N _{e Hα})	Electron density (10 ¹⁷ cm ⁻³) from N II and O II line ($\overline{N_e}_{RTE}$)
20 µs	33.74	16.95
23 µs	28.77	-
26 µs	24.05	12.35
30 µs	18.90	-
33 µs	15.11	-
36 µs	12.29	8.55

Emission sortant par couche (contribution à la corde central)

ONERA

THE EPENCH AEPOSPACE IA