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1. Problem formulation

Goal of our work: 
To analytically solve for:  

Gray medium contained between two diffuse/gray parallel plates.

x
y

z
q 

T2e2   

T1e1   
Heat transfer by photons as well as by photon-carrier and carrier-carrier interactions

Carrier (molecule)

Photon

Absorption and scattering 
coefficients independent of 
the spectral frequency.

Radiation ConductionRadiation-Conduction

Heat flux = q=qr + qc= ?
Temperature = T(z) = ? 
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Radiative Transfer Equation (RTE)

Radiation intensity Blackbody intensity

Scattering albedo:Extintion coefficient Source

Radiative heat flux:

Temperature:
(Obtained after 

integrating the RTE)

Conductive heat flux:

Total heat flux:
(Principle of energy conservation)

In absence of heat conduction:

(Chandrasekhar’s result)



Outline

1. Integral solution of the RTE
Formalism reported by Modest
2. Pure radiative heat transfer 
Discrete ordinates method (DOM)
Integral solution+DOM
Results for T(z) et q
3. Radiative-conductive heat transfer
DOM
Integral solution+DOM
Results for T(z) et q
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1. Integral solution of the RTE

Radiosities Radiative heat fluxes leaving the diffuse gray surfaces

Independent of μ.
= "#

Radiative heat flux:

Temperature:
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Normalized heat flux and temperature

Radiative heat flux:

Fredholm’s integral equation
(unknown analytical solution)

Temperature:

Following Modest’s book:

• Optically thin/thick approx.
• Schuster-Schwarzschild approx.
• Milne-Eddington approx.
• Moment/variational methods
• Exponential kernel approx.

Approximate analytical methods Numerical methods

• Successive approximations
• Spherical harmonics
• Discrete ordinates
• Monte Carlo



Boundary Conditions 
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Energy balance
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Radiative heat flux:

Temperature:

Remaining problem: ) * =? -. * =?

(Flux)

(Temp)
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Outline

1. Integral solution of the RTE
Modest’s Formalism
2. Pure radiative heat transfer 
Discrete ordinates method (DOM)
Integral solution+DOM
Results for T(z) et q
3. Radiative-conductive heat transfer
DOM
Integral solution+DOM
Results for T(z) et q
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Optically thick medium (        ):  

Optically thin medium (        ):  
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No heat transfer by the interactions of the medium energy carriers
2. Pure radiative heat transfer (vacuum problem)

= constant

Eqs. derived by 
M. Modest.

Limiting solutions:
Modest, Majumdar, Chen.

Heaslet and Warming



Discrete ordinates method (DOM)
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Split of the integration interval −1≤μ≤1 of an arbitrary function 
F(μ) in 2N symmetrical directions.

This method developed by Chandrasekhar is based on the Gaussian quadrature:

RTE

System of 2N linear differential equations

Solution first derived by Chandrasekhar. 



11

DOM solution for the temperature and heat flux
Temperature equation
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Heat flux

Series expansion of an unknown function p($).

Independent of position!

General solutions of the Fredholm integral equations in terms of the parameters β(τ)
and γ = γ(τ) as well as of the function p(ξ).
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Solutions for β(τ), γ = γ(τ), and p(ξ)
Fredholm integral equations at ξ = 0:

Fredholm integral equation for the temperature at ξ → ∞:

Key assumption!

(1)

(2)

From (1) and (2): Decomposition on the base of E2, E3, …
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Summary of the solution

Remark:

Effective radiative conductivity
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Solutions 1
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Modest model [2]
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Excellent agreement with the 
numerical predictions (dots) of the 
Monte Carlo method, for different 
emissivities. 

Excellent agreement with the 
predictions (dots) of the Monte Carlo 
method, for a large interval of optical 
thicknesses !.



Solution 2
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(c)

Excellent agreement with the 
numerical predictions (dots) of the 
Monte Carlo method.

Excellent agreement with the 
numerical predictions (dots) of the 
Monte Carlo method.
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Outline

1. Integral solution of the RTE
Modest’s Formalism
2. Pure radiative heat transfer 
Discrete ordinates method (DOM)
Integral solution+DOM
Results for T(z) et q
3. Radiative-conductive heat transfer
DOM
Integral solution+DOM
Results for T(z) et q
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3.  Radiative-conductive heat transfer
Discrete ordinates solution:  

From integral equations:  



Heat flux and temperature profiles 1
From Eqs. (Flux) and (Temp):

Corrected temperature profile:

Fourier’s law Constant (Energy conservation)

Integration constant

Boundary conditions:

18



Heat flux and temperature profiles 2
Total heat flux

Temperature

Effective thermal conductivity

Conduction Radiation Coupling

Relevant for optically thin 
media without scattering:

In absence of absorption (Ω=1):
Ψ = 0 19



Results
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Excellent agreement with the 
numerical predictions (dots) reported 
by Modest.

• Boundary discontinuities in absence 
of heat conduction (N = 0) only. 

• Excellent agreement with the 
numerical predictions (dots) reported 
by Modest.

Accuracy > 99.9%

Weak heat conduction: Total heat flux 
nearly independent of N.
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Conclusion to take home
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The discrete ordinates method can be used to analytically solve the RTE 
with an accuracy higher than 99.9%.
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Integral equations for q and T

RTE

Discrete ordinates method for 
q and T

Find the unknown parameters

Solution for 
q and T
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