Analytical description of the radiative-conductive heat transfer in a gray medium

Jose Ordonez-Miranda

Denis Lemonnier, Younes Ezzahri,

Karl Joulain

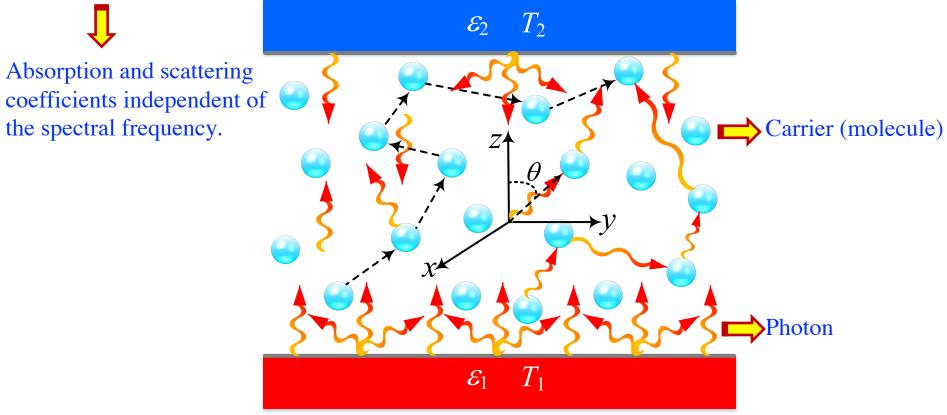
Institute Pprime

Thermal Nanosciences and Radiation Team

Saclay, November 23, 2018

1. Problem formulation

Gray medium contained between two diffuse/gray parallel plates.



Heat transfer by **photons** as well as by **photon-carrier** and **carrier-carrier** interactions

Radiation

Radiation-Conduction

Conduction

Goal of our work:

To analytically solve for:

Heat flux =
$$q=q_r+q_c=$$
?
Temperature = $T(z)=$?

Radiative Transfer Equation (RTE)

$$\xi = \kappa Z$$

$$\kappa = \kappa_a + \kappa_s$$
Radiation intensity
$$K = \kappa_a + \kappa_s$$
Scattering albedo:
$$\Omega = \kappa_s / \kappa$$
Scattering albedo:
$$\Omega = \kappa_s / \kappa$$

Radiative heat flux:
$$q_r(\xi) = 2\pi \int_{-1}^1 I(\xi, \mu) \mu d\mu$$

Temperature:

(Obtained after integrating the RTE)

$$S(\xi) = \frac{1}{2} \int_{-1}^{1} I(\xi, \mu) d\mu + \frac{1}{4\pi} q_r'(\xi)$$
$$= I_0(\xi) - \frac{\Omega}{4\pi (1 - \Omega)} q_r'(\xi),$$

Conductive heat flux:
$$q_c(\xi) = -\kappa k dT/d\xi$$

In absence of heat conduction:

$$S(\xi) = I_0(\xi)$$

Total heat flux:
$$q_r(\xi) + q_c(\xi) = \text{constant}$$

(Chandrasekhar's result)

(Principle of energy conservation)

Outline

1. Integral solution of the RTE

Formalism reported by Modest

2. Pure radiative heat transfer

Discrete ordinates method (DOM)

Integral solution+DOM

Results for T(z) et q

3. Radiative-conductive heat transfer

DOM

Integral solution+DOM

Results for T(z) et q

1. Integral solution of the RTE

$$I^{+}(\xi,\mu) = \frac{J_{1}^{+}}{\pi} e^{-\xi/\mu} + \frac{1}{\mu} \int_{0}^{\xi} S(\xi') e^{-(\xi-\xi')/\mu} d\xi', \implies 0 < \mu < 1$$

$$I^{-}(\xi,\mu) = \frac{J_{2}^{-}}{\pi} e^{(\tau-\xi)/\mu} - \frac{1}{\mu} \int_{\xi}^{\tau} S(\xi') e^{(\xi'-\xi)/\mu} d\xi' \Longrightarrow -1 < \mu < 0$$

Radiosities
$$J_1^+ = \pi I(0, \mu)$$
$$J_2^- = \pi I(\tau, \mu)$$

Radiosities $J_1^+ = \pi I(0, \mu)$ Radiative heat fluxes leaving the diffuse gray surfaces $\xi = 0 \qquad \xi = \tau = \kappa d$ Independent of μ .

Radiative heat flux:
$$\frac{q_r(\xi)}{2} = J_1^+ E_3(\xi) - J_2^- E_3(\tau - \xi) + \int_0^\xi J(\xi') E_2(\xi - \xi') d\xi'$$

$$- \int_\xi^\tau J(\xi') E_2(\xi' - \xi) d\xi',$$

Temperature
$$I(\xi) = \pi S(\xi)$$

Temperature:
$$J(\xi) = \pi S(\xi)$$

$$J(\xi) = \pi S(\xi)$$

$$+ \int_0^{\tau} J(\xi') E_1(|\xi' - \xi|) d\xi'$$

$$E_n(a) = \int_0^1 x^{n-2} e^{-a/x} dx$$
5

$$E_n(a) = \int_0^1 x^{n-2} e^{-a/x} dx$$

Normalized heat flux and temperature

Following Modest's book:
$$Q_r(\xi) = \frac{q_r(\xi)}{J_1^+ - J_2^-}$$
 $U(\xi) = \frac{J(\xi) - J_2^-}{J_1^+ - J_2^-}$

$$U(\xi) = \frac{J(\xi) - J_2^-}{J_1^+ - J_2^-}$$

Radiative heat flux:
$$\frac{Q_r(\xi)}{2} = E_3(\xi) - \frac{d}{d\xi} \int_0^\tau U(\xi') E_3(|\xi' - \xi|) d\xi'$$

Temperature:
$$2U(\xi) = \frac{1}{2}Q'_r(\xi) + E_2(\xi) + \int_0^\tau U(\xi')E_1(|\xi' - \xi|)d\xi'$$

Fredholm's integral equation (unknown analytical solution)

Approximate analytical methods

Numerical methods

- Optically thin/thick approx.
- Schuster-Schwarzschild approx.
- Milne-Eddington approx.
- Moment/variational methods
- Exponential kernel approx.

- Successive approximations
- Spherical harmonics
- Discrete ordinates
- Monte Carlo

Boundary Conditions

Energy balance

$$2\pi \int_{0}^{1} I^{-}(\tau, -\mu) \mu d\mu = (1 - \varepsilon_{2}) 2\pi \int_{0}^{1} I^{+}(\tau, \mu) \mu d\mu + \varepsilon_{2} J_{0}(\tau) \frac{\varepsilon_{2} T_{2}}{I^{+}(\tau, \mu)} I^{-}(\tau, -\mu)$$

$$2\pi \int_{0}^{1} I^{+}(0,\mu)\mu d\mu = (1-\varepsilon_{1})2\pi \int_{0}^{1} I^{-}(0,-\mu)\mu d\mu + \varepsilon_{1}J_{0}(0)$$

$$I^{+}(0,\mu) \int_{0}^{1} I^{-}(0,-\mu)\mu d\mu + \varepsilon_{1}J_{0}(0)$$

$$\mathcal{E}_{1} \quad T_{1}$$

$$J_{0}(\xi) = \pi I_{0}(\xi) = n^{2}\sigma T^{4}$$

Radiative heat flux:
$$\frac{q_r(\xi)}{J_0(0) - J_0(\tau)} = \frac{Q_r(\xi)}{f(\tau)}$$

(Flux)

Temperature:
$$\frac{J_{0}(\xi) - J_{0}(\tau)}{J_{0}(0) - J_{0}(\tau)} f(\tau) = U(\xi) + \frac{\Omega}{4(1 - \Omega)} Q'_{r}(\xi) + (\varepsilon_{2}^{-1} - 1)Q_{r}(\tau)$$
(Temp)
$$f(\tau) = 1 + (\varepsilon_{1}^{-1} - 1)Q_{r}(0) + (\varepsilon_{2}^{-1} - 1)Q_{r}(\tau)$$

Remaining problem: $U(\xi) = ?$ $Q_r(\xi) = ?$

Outline

1. Integral solution of the RTE

Modest's Formalism

2. Pure radiative heat transfer

Discrete ordinates method (DOM)

Integral solution+DOM

Results for T(z) et q

3. Radiative-conductive heat transfer

DOM

Integral solution+DOM

Results for T(z) et q

2. Pure radiative heat transfer (vacuum problem)

No heat transfer by the interactions of the medium energy carriers

$$\frac{q}{n^2\sigma(T_1^4 - T_2^4)} = \frac{Q}{1 + (\varepsilon_1^{-1} + \varepsilon_2^{-1} - 2)Q}$$

$$Q_r(\xi) = Q = \text{constant}$$

$$\frac{T^4(\xi) - T_2^4}{T_1^4 - T_2^4} = \frac{U(\xi) + (\varepsilon_2^{-1} - 1)Q}{1 + (\varepsilon_1^{-1} + \varepsilon_2^{-1} - 2)Q}$$

$$\Rightarrow \frac{Q_r(\xi)}{2} = E_3(\xi) - \frac{d}{d\xi} \int_0^\tau U(\xi') E_3(|\xi' - \xi|) d\xi'$$
 Eqs. derived by

$$\Rightarrow 2U(\xi) = E_2(\xi) + \int_0^{\tau} U(\xi') E_1(|\xi' - \xi|) d\xi'$$

M. Modest.

Limiting solutions:

Optically thin medium ($\tau \ll 1$): $Q^{-1} = 1 + 3\tau/4$ Modest, Majumdar, Chen.

Optically thick medium $(\tau \gg 1)$: $Q = (4/3)/(1.4210 + \tau)$. Heaslet and Warming

Discrete ordinates method (DOM)

This method developed by Chandrasekhar is based on the Gaussian quadrature:

$$\int_{-1}^{1} F(\mu) d\mu = \sum_{n} a_{n} F(\mu_{n}) \implies F(\mu) = \mu^{i} \implies \sum_{n} a_{n} \mu_{n}^{i} = \begin{cases} \frac{2}{1+i}, & i = 0, 2, 4, \dots \\ 0, & i = 1, 3, 5, \dots \end{cases}$$

$$a_n = a_{-n}$$
 Split of the integration interval $-1 \le \mu \le 1$ of an arbitrary function $F(\mu)$ in $2N$ symmetrical directions.

RTE
$$\Longrightarrow$$
 $I(\xi, \mu_m) + \mu_m \frac{\partial I(\xi, \mu_m)}{\partial \xi} = \frac{1}{2} \sum_n a_n I(\xi, \mu_n)$ $m = \pm 1, \pm 2, \dots, \pm N$

System of 2*N* linear differential equations

Solution first derived by Chandrasekhar.

$$I(\xi,\mu) = \alpha' \left[\xi + \beta' - \mu + \sum_{j=1}^{N-1} D_j \left(\frac{e^{-\delta_j \xi}}{1 - \mu \delta_j} - \frac{e^{-\delta_j (\tau - \xi)}}{1 + \mu \delta_j} \right) \right]$$

DOM solution for the temperature and heat flux

Temperature equation
$$2I_0(\xi) = \int_{-1}^{1} I(\xi,\mu)d\mu$$

$$2I_0(\xi) = \sum_{n} a_n I(\xi,\mu_n) \qquad q(\xi) = 2\pi \sum_{n} a_n I(\xi,\mu_n)\mu_n$$

$$I_0(\xi) = \alpha' \left[\xi + \beta' + \sum_{j=1}^{n} D_j (e^{-\delta_j \xi}) - e^{-\delta_j (\tau - \xi)} \right] \qquad q(\xi) = -\frac{4\pi}{3} \alpha'$$
Series expansion of an unknown function $p(\xi)$.
$$I_0(\xi) = \alpha' \left[\xi + \beta' + \gamma \left(p(\xi) - p(\tau - \xi) \right) \right] \qquad U(\xi) = (\pi I_0(\xi) - J_2^-)/(J_1^+ - J_2^-)$$

$$U(\xi) = 1 - \alpha \left[\xi + \beta + \gamma \left(p(\xi) - p(\tau - \xi) \right) \right]$$

$$\alpha = \frac{3}{4}Q = \frac{1}{\tau + 2\beta} \qquad \text{Independent of position!}$$

General solutions of the Fredholm integral equations in terms of the parameters $\beta(\tau)$ and $\gamma = \gamma(\tau)$ as well as of the function $p(\xi)$.

Solutions for $\beta(\tau)$, $\gamma = \gamma(\tau)$, and $p(\xi)$

Fredholm integral equations at $\xi = 0$:

$$Q = 1 - 2 \int_{0}^{\tau} U(\xi') E_{2}(\xi') d\xi' \qquad 2U(0) = 1 + \int_{0}^{\tau} U(\xi') E_{1}(\xi') d\xi'$$

$$\begin{bmatrix} 1 - E_{2}(\tau) & \chi \\ 1/2 + E_{3}(\tau) & C_{2} \end{bmatrix} \begin{bmatrix} \beta(\tau) \\ \gamma(\tau) \end{bmatrix} = \begin{bmatrix} 1/2 - E_{3}(\tau) \\ 1/3 + E_{4}(\tau) \end{bmatrix}$$

$$\chi = 2(p(0) - p(\tau)) - C_{1} \qquad C_{n} = \int_{0}^{\tau} [p(\xi) - p(\tau - \xi)] E_{n}(\xi) d\xi$$

Fredholm integral equation for the temperature at $\xi \to \infty$:

$$\gamma_{\infty} p(\xi) = -\beta_{\infty} E_2(\xi) + E_3(\xi) + \gamma_{\infty} \int_0^{\tau} p(\xi') E_1(|\xi' - \xi|) d\xi'$$

$$\downarrow \gamma_{\infty} p(\xi) = b_0 E_2(\xi) + c_0 E_3(\xi)$$
Key assumption!

Decomposition on the base of E. E.

From (1) and (2): $\gamma_{\infty} = 1$ Decomposition on the base of $E_2, E_3, ...$

$$\beta_{\infty} + (2 - I_{12})b_0 + (1 - I_{13})c_0 = \frac{1}{2} \left[\frac{\beta_{\infty}}{2} + I_{22}b_0 + I_{23}c_0 = \frac{1}{3} \right] \left[\frac{\beta_{\infty}}{3} - I_{23}b_0 - I_{33}c_0 = \frac{1}{4} \right]$$

$$I_{nm} = \int_0^\infty E_n(\xi) E_m(\xi) d\xi$$
 $\beta_\infty = 0.71047$, $b_0 = -0.25082$ and $c_0 = 0.23526$

Summary of the solution

$$\frac{q}{n^2\sigma\left(T_1^4 - T_2^4\right)} = \frac{Q}{1 + (\varepsilon_1^{-1} + \varepsilon_2^{-1} - 2)Q} \qquad \frac{T^4(\xi) - T_2^4}{T_1^4 - T_2^4} = \frac{U(\xi) + (\varepsilon_2^{-1} - 1)Q}{1 + (\varepsilon_1^{-1} + \varepsilon_2^{-1} - 2)Q}$$

$$\frac{T^4(\xi) - T_2^4}{T_1^4 - T_2^4} = \frac{U(\xi) + (\varepsilon_2^{-1} - 1)Q}{1 + (\varepsilon_1^{-1} + \varepsilon_2^{-1} - 2)Q}$$

$$U(\xi) = 1 - \alpha[\xi + \beta + \gamma(p(\xi) - p(\tau - \xi))]$$

$$\alpha = \frac{3}{4}Q = \frac{1}{\tau + 2\beta}$$

$$\alpha = \frac{3}{4}Q = \frac{1}{\tau + 2\beta} \qquad \begin{bmatrix} 1 - E_2(\tau) & \chi \\ 1/2 + E_3(\tau) & C_2 \end{bmatrix} \begin{bmatrix} \beta(\tau) \\ \gamma(\tau) \end{bmatrix} = \begin{bmatrix} 1/2 - E_3(\tau) \\ 1/3 + E_4(\tau) \end{bmatrix}$$

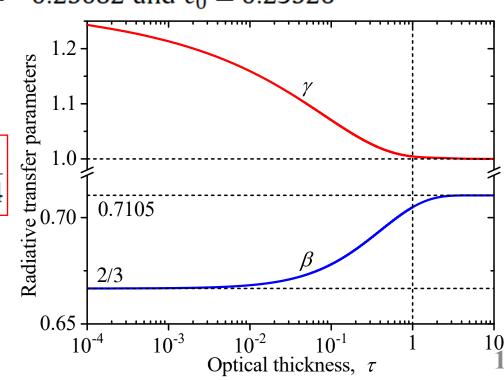
$$p(\xi) = b_0 E_2(\xi) + c_0 E_3(\xi)$$

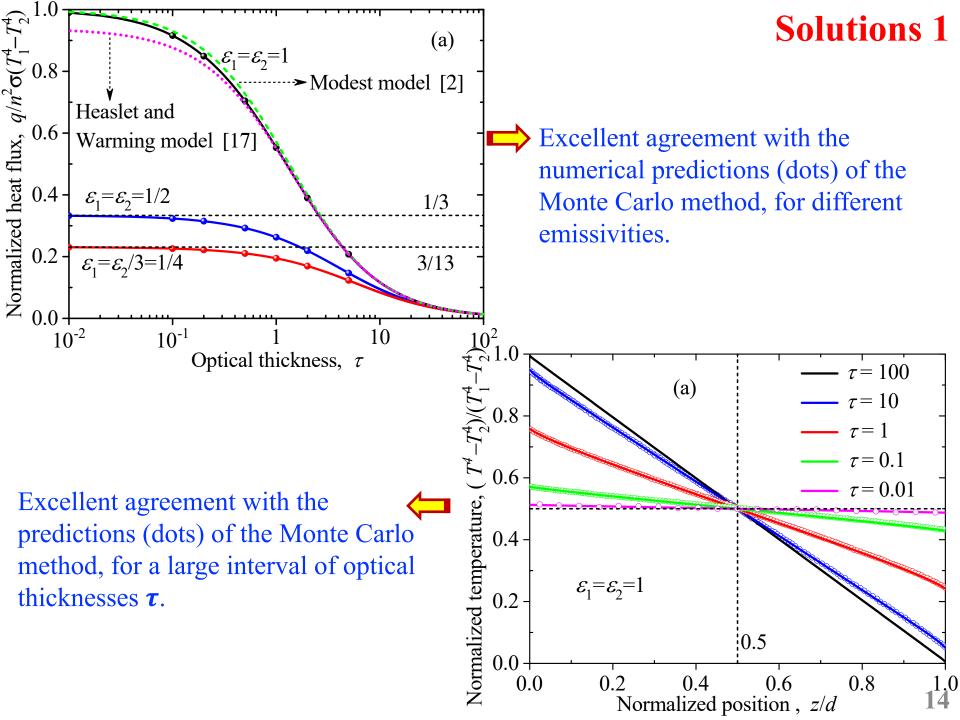
$$p(\xi) = b_0 E_2(\xi) + c_0 E_3(\xi)$$
 $b_0 = -0.25082$ and $c_0 = 0.23526$

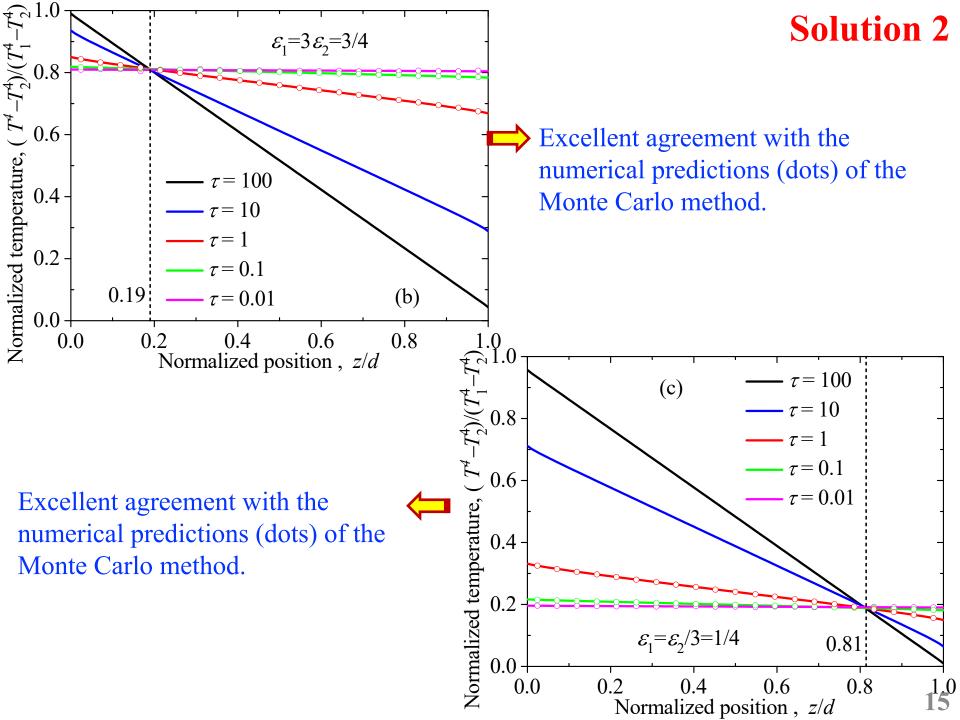
Remark: $q = k_{eff}(T_1 - T_2)/d$

$$k_{eff} = \frac{n^2 \sigma (T_1 + T_2)(T_1^2 + T_2^2)d}{\varepsilon_1^{-1} + \varepsilon_2^{-1} - 2 + 3(2\beta + \tau)/4}$$

Effective radiative conductivity







Outline

1. Integral solution of the RTE

Modest's Formalism

2. Pure radiative heat transfer

Discrete ordinates method (DOM)

Integral solution+DOM

Results for T(z) et q

3. Radiative-conductive heat transfer

DOM

Integral solution+DOM

Results for T(z) et q

3. Radiative-conductive heat transfer

Discrete ordinates solution:

$$U(\xi) = 1 - A[\xi + B + C\Omega(p_{23}(\xi) - p_{23}(\tau - \xi))]$$

$$A^{-1} = \tau + 2B$$

$$Q_r(\xi) = \frac{4A}{3}[1 - 3(1 - \Omega)C(p_{34}(\xi) + p_{34}(\tau - \xi))]$$

$$p_{23}(\xi) = -p'_{34}(\xi)$$

From integral equations:

$$\begin{bmatrix} 1 - E_2(\tau) & \chi \\ 1/2 + E_3(\tau) & \Gamma \end{bmatrix} \begin{bmatrix} B(\tau) \\ C(\tau) \end{bmatrix} = \begin{bmatrix} 1/2 - E_3(\tau) \\ 1/3 + E_4(\tau) \end{bmatrix}$$

$$p_{23}(\xi) = bE_2(\xi) + cE_3(\xi)$$
 $p_{34}(\xi) = bE_3(\xi) + cE_4(\xi)$

$$\begin{bmatrix} 1 & 2 - \Omega I_{12} & 1 - \Omega I_{13} \\ 1/2 & 1 - \Omega + \Omega I_{22} & \frac{2}{3}(1 - \Omega) + \Omega I_{23} \\ 1/3 & \frac{2}{3}(1 - \Omega) - \Omega I_{23} & \frac{1 - \Omega}{2} - \Omega I_{33} \end{bmatrix} \begin{bmatrix} B_{\infty} \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/3 \\ 1/4 \end{bmatrix}$$

$$I_{nm} = \int_0^\infty E_n(\xi) E_m(\xi) d\xi$$

$$b_0 = b(\Omega = 1)$$

$$c_0 = c(\Omega = 1)$$

Heat flux and temperature profiles 1

From Eqs. (Flux) and (Temp):

$$\frac{q_r(\xi)}{n^2\sigma\left(T_1^4 - T_2^4\right)} = \frac{Q_r(\xi)}{f(\tau)}$$

$$\frac{q_r(\xi)}{n^2\sigma(T_1^4 - T_2^4)} = \frac{Q_r(\xi)}{f(\tau)}$$

$$\frac{T^4(\xi) - T_2^4}{T_1^4 - T_2^4}f(\tau) = 1 - A(\xi + B) + (\varepsilon_2^{-1} - 1)Q_r(\tau)$$

$$f(\tau) = 1 + (\varepsilon_1^{-1} + \varepsilon_2^{-1} - 2)Q_r(\tau)$$

Corrected temperature profile:

$$q_c(\xi) = -k\kappa dT(\xi)/d\xi = q_t - q_r(\xi) = q_t - (J_0(0) - J_0(\tau))Q_r(\xi)/f(\tau)$$

Fourier's law

Constant (Energy conservation)

$$T(\xi) = T_0 - \frac{q_t \xi}{k\kappa} + \frac{4An^2 \sigma (T_1^4 - T_2^4)}{3k\kappa f(\tau)} [\xi + 3\Psi(\xi)]$$
Integration constant

$$\Psi(\xi) = (1 - \Omega)C(p_{45}(\xi) - p_{45}(\tau - \xi)) \qquad p_{45}(\xi) = bE_4(\xi) + cE_5(\xi).$$

Boundary conditions:

$$T(0) = T_1 \qquad T(\tau) = T_2$$

Heat flux and temperature profiles 2

Total heat flux

$$q_t = \frac{k}{d}(T_1 - T_2) + \frac{4}{3f(\tau)} \frac{n^2 \sigma (T_1^4 - T_2^4)}{\tau + 2B} \left(1 + 6 \frac{\Psi(\tau)}{\tau}\right)$$
Conduction Radiation Coupling

Temperature

$$T(\xi) = T_1 - (T_1 - T_2)\frac{\xi}{\tau} + \frac{4}{k\kappa f(\tau)} \frac{n^2 \sigma (T_1^4 - T_2^4)}{\tau + 2B} \times \left[\Psi(\xi) + \left(1 - \frac{2\xi}{\tau} \right) \Psi(\tau) \right]$$

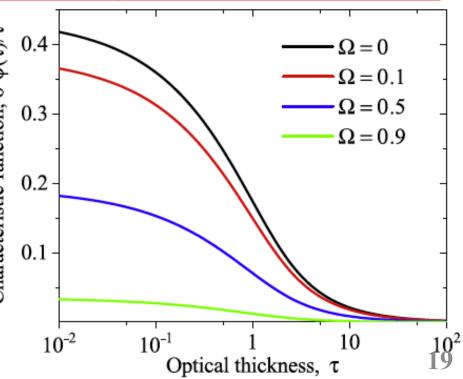
Effective thermal conductivity

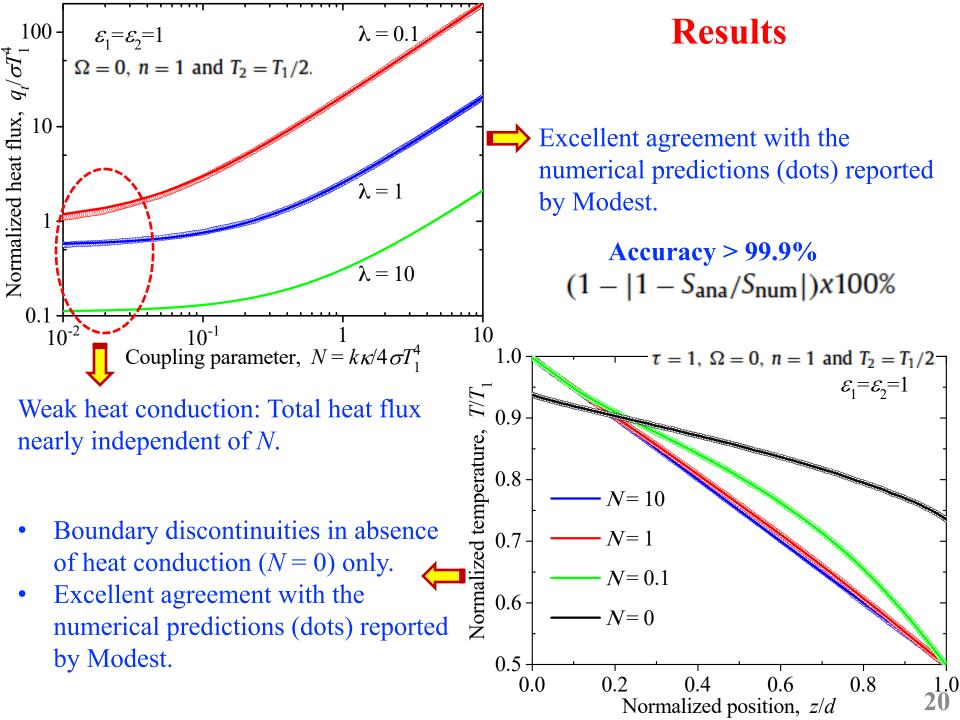
$$K_{eff} = k + \frac{n^2 \sigma (T_1 + T_2)(T_1^2 + T_2^2)d(1 + 6\Psi(\tau)/\tau)}{(\varepsilon_1^{-1} + \varepsilon_2^{-1} - 2)(1 - 3\chi) + 3(2\beta + \tau)/4}$$

Relevant for optically thin media without scattering:
$$\Omega = 0$$

In absence of absorption (Ω =1):

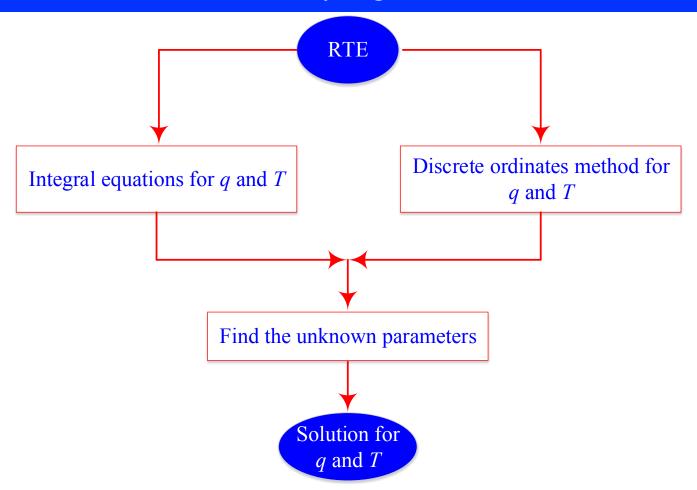
$$\Omega = 0$$





Conclusion to take home

The discrete ordinates method can be used to analytically solve the RTE with an accuracy higher than 99.9%.



Jose Ordonez-Miranda, Denis Lemonnier, Younès Ezzahri, Karl Joulain

Applied Mathematical Modelling **56** (2018) 51–64

Thank you!

Contact Email: jose.ordonez@cnrs.pprime.fr

Papers and preprints

www.researchgate.net/profile/Jose_Ordonez-Miranda