37th International Symposium on Combustion Dublin, Ireland 2018

Multi-diagnostic soot measurements in a laminar diffusion flame to assess the ISF database consistency

B. Franzelli^a, **M. Roussillo^b**, P. Scouflaire^b, J. Bonnety^c, R. Jalain^c, T. Dormieux^a, S. Candel^a, G. Legros^c

 ^(a) EM2C lab, CNRS, CentraleSupélec,Université Paris-Saclay, 91192 Gif-sur-Yvette, France
 ^(b) Air Liquide R&D Paris Saclay, 1 Chemin de la porte des Loges, 78354 Jouy-en-Josas, France

^(c) Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France

Fundamental understanding of soot production

Control of soot release is required:

- 1. Full understanding of soot formation and oxidation processes
- 2. Accurate modeling of soot

➔ Accurate experimental database is needed!

YALE DIFFUSION BURNER (YDB) – ISF workshop

Comparisons of experimental and numerical methods from different laboratories

- Experimental uncertainties
- Extensive experimental database
- Model validation

OBJECTIVES

Variability of experimental data on f_v , Tand d_p : new measurements vs literature

Sooting Yale Coflow Diffusion Flames, available at http://guilford.eng.yale.edu/yalecoflowflames/ (2016). M.Smooke,M.Long,B.Connelly,M.Colket,R.Hall,Combust.Flame14 3 (2005) 613–628.

f_v variability observed in literature

[1] P. B. Kuhn et al., Proc. Combus.Inst. 33 (2011).
[2] M.Smooke et al., Combust.Flame143 (2005).

Same flame (X_{N2} =32%) **BUT** different teams, techniques and optical setups:

Shorter flame for YALE LII

Same max f_v value
 (0.25ppm) BUT Adelaide LII
 calibrated with YALE LII

What is the variability on $f_{v,}$ *T* and d_p ? What are the sources of errors?

^[3] K. K. Foo et al., Combust. Flame 181 (2017).

- Experimental Setup (LII and MAE)
- Soot volume fraction comparison
- TiRe-LII results for primary particle diameter

Modulated Absorption/Emission technique^[1]

[1] G. Legros et al., Combust. Flame (2015).

Laser Induced Incandescence (LII)

Operating conditions

Laser $\lambda = 1064 \mathrm{nm}$ S $0.45 \mathrm{J/cm}^2$ (9ns) Camera $t_0 = 0 \mathrm{ns}$ $\Delta t = 25 \mathrm{ns}$ A

Sheet $f_1 = +1000 \text{mm}$ $f_2 = -50 \text{mm}$ $7 \text{cm} \times 0.35 \text{mm}$ Filter $425 \pm 25 \text{nm}$

Uncertainties

- 4% of peak LII signal (flame variability)
- Laser light absorption

Only half side of results is considered (laser absorption)

Calibration procedure

How? Considering the first p maximum How many p? p=100 in the wings of the flame 10% of C_{calib} $I^{LII} = C_{calib} f_v^{MAE}$

• Self-absorption of LII signal 5% in the middle of the flame

Comparison on f_v with state-of-the-art data^[1,2]

- Flame length variability
 Operating conditions effect?
- Similar qualitative trend
 High f_v in wings
- Different max. values YALE-PYRO: 4.3 ppm YALE-LII: 4.0 ppm MAE: 4.6 ppm LII: 5.0 ppm LII: 5.0 ppm

25 % difference !!

Impact of calibration technique and post-processing?

[1] P. B. Kuhn et al., Proc. Combus. Inst. 33 (2011). [2] M.Smooke et al., Combust. Flame.143 (2005).

LII VS MAE

FIRST-TIME COMPARISON BETWEEN MAE AND LII

- Similar trends
- Good agreement in wings (calibration zone) but discrepancies on centerline

MAE deconvolution error?

Small differences between LII and LII_{absorp}
 Auto-absorption is negligible here (low optical thickness)

LII VS LII-YALE^[1]

COMPARISON ON LII RESULTS FROM TWO TEAMS

Relevant differencies due to:

- Experimental uncertainties?
- Different flame lengths ?
- Choice of laser wavelengths for LII ?
 - $\lambda = 1064$ nm vs $\lambda = 532$ nm
- Choice of E(m)? E(m) = 0.38nm vs E(m) = 0.45nm
- LII filter?
- Calibration technique?

Qualitative agreement among techniques and teams BUT quantitative differences!!!

Time-resolved LII for primary particles d_p

Monodisperse reconstruction

1) Look-up table from LII decay signal simulations (LIISim-Web tool) $\tau_{ij}^{mod}(d_p)$

Assumptions:

- *T*=1700 K
- Spherical particles
- Monodisperse

2) d_p is choosen so that it minimizes $\mathcal{F}(d_p) = [\tau_{ij}^{\exp} - \tau_{ij}^{\mathrm{mod}}(d_p)]^2$ with $\tau_{ij} = (t_i - t_j)/(\ln(I_j) - \ln(I_i))$

- Largest d_p in wings, smallest d_p on centerline.
- Results depend on (i,j): high gating delays to avoid vaporization effect but information on smallest d_p may be lost (black regions)
 - → this choice depends on investigated PPSD.

LIISim-Web available at http://web.liisim.com/ (Updated 2016). M. Hofmann et al, ECM (2017).

Polydisperse reconstruction

Comparing mono and poly:

- Higher d_p for mono in wings (where σ is high = poly PPSD)
- Similar d_p in centerline (where σ is small = mono PPSD)
 → Already observed on Santoro flames^[1]

<u>Uncertainties[1]</u> • Const. temperature: $4\% \tau$

• Shielding effect: 30% d_p and 5% σ

1. Look-up table from LII decay signal simulations (LIISim-Web tool)

Assumptions:

•

T=1700 K

$$au_{ij}^{\mathrm{mod}}(d_p,\sigma)$$

- Spherical particles
- Presumed log-normal PPSD population

2. $d_{p,\sigma}$ are choosen so that they minimize

$$\mathcal{F}(d_p,\sigma) = [\tau_{ij}^{\exp} - \tau_{ij}^{\mathrm{mod}}(d_p,\sigma)]^2$$

[1] L. Chen et al. Appl. Phys (2017). 11

Effect of dilution

60%-80%: High d_p

COMPARISON ON 32% CASE

Adelaide^[1]: 50 nm
 Here: 30 nm
 TEM (80%): d_p < 50nm

Measurements? – Post-processing? LII models for table?

Raw data should always be provided to allow pertinent comparisons

[1] K. K. Foo et al., Combust. Flame (2017)

TR-LII vs TEM (Transmission Electron Microscopy)^[1]

- Qualitative agreement with LII
- LII overestimates d_p and σ vs TEM (better agreement with poly than mono)

UNCERTAINTIES:

- Shielding effect: 30% d_p and 5% σ
- PPSD is log-normal?
- Effective d_p (LII) vs measured d_p (TEM)

[1] N.J. Kempema et al, Appl. Phys. B (2016). [2] L. Chen et al. Appl. Phys (2017).

Conclusions

- Qualitative agreement among techniques and results obtained by different research teams for f_v but quantitative differences
 - d_p correlates with f_v : by increasing fuel flow rate, d_p and σ increase;
- With monodisperse assumption, d_p field is qualitatively retrieved but its value is largely overestimated;
- High variability of PPSD with diagnostics and post-processing methods.
 - Need for a cross comparison between multiple data sets
 - → consistent database for sooting flames
 - Provide access to measured, post-processed and modeled signals
 - → better understanding of the discrepancies

ACKNOWLEDGMENT

This study has been supported by the Air Liquide, CentraleSupelec and CNRS Chair on oxycombustion and heat transfer for energy and environment and by the OXYTEC project, grant ANR-12-CHIN-0001 of the French Agence Nationale de la Recherche.

Accounting for self-absorption of LII signal

0.3

0.95

0.9

-0.3

0

r [cm]

 \rightarrow neglected in the following

Flame sensitivity is a first source of errors

- Flame flickering: 4% flame luminosity
- Flow rate uncertainties: mass flow rate from inner diameter, bulk velocity and mass flow rate controller d^{real}_f = 3.9mm ≠ d^{nom}_f = 4.0mm
 4% flow rate → 6 mm flame length=10 %
- Inner tube position with respect to air co-flow: Not indicated in the publications (here 0.5 mm)

What about the experimental procedure, associated setup and data post-processing?

Comparison on *T* with state-of-the-art data^[1]

- Similar results with pyrometry (~100 K)
- PYRO-DIG on a wider radial region (already observed for new LII)
- PYRO-MAE needs high f_v to obtain $k_\lambda \rightarrow$ smaller detection region

^[1] P. B. Kuhn et al., Proc. Combus.Inst. 33 (2011). 9

Comparison on *T* with state-of-the-art data^[1]

MAE technique

No calibration or modeling to correlate f_{y} and k_{λ}

constant

soot opt.

prop.

- Similar results with pyrometry (~100 K)
- PYRO-DIG on a wider radial region (already observed for new LII) \bigcirc
- PYRO-MAE needs high f_{ν} to obtain $k_{\lambda} \rightarrow$ smaller detection region
- MAE: high T in the wings (from simulations T < 2150 K) 0

 \rightarrow affected by low optical thickness and sharp T gradients here (N.B.: MAE validation on Santoro flame -> smoother gradients)

TR-LII vs TEM (Transmission Electron Microscopy)^[1]

TEM: Higher d_p and σ in wings than centerline

-qualitative agreement with LII

- LII overestimates d_p and σ vs TEM (better agreement with poly than mono)
- Similar to results obtained on the Santoro flame^[2]

UNCERTAINTIES:

- Position of TEM probe: 0.5 mm in r \rightarrow 30% d_p
- Shielding effect: 30% d_p and 5% σ
- PPSD is log-normal?
- Effective d_p (LII) vs measured d_p (TEM)

^[1] N.J. Kempema et al, Appl. Phys. B (2016). [2] L. Chen et al. Appl. Phys (2017).