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2 Fundamental understanding of soot production
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Control of soot release is required: 
1.  Full understanding of soot formation and oxidation processes 
2.  Accurate modeling of soot  

è Accurate experimental database is needed!   

YALE DIFFUSION BURNER (YDB) – ISF workshop 

Comparisons of experimental and numerical methods 
from different laboratories 

Experimental uncertainties 
  Extensive experimental database 
  Model validation  

Sooting Yale Coflow Diffusion Flames, available at  
http://guilford.eng.yale.edu/yalecoflowflames/ (2016). 
M.Smooke,M.Long,B.Connelly,M.Colket,R.Hall,Combust.Flame14
3 (2005) 613–628.  

(1-XN2) C2H4+ XN2 N2 

Air 
OBJECTIVES  
Variability of experimental data on fv , T 
and dp: new measurements vs literature 



3 fv variability observed in literature 
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Same flame (XN2=32%) BUT 
different teams, techniques 
and optical setups: 
 

Shorter flame for YALE LII  
 

Same max fv value 
(0.25ppm) BUT Adelaide LII 
calibrated with YALE LII 
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What is the 
variability on fv, 
T and dp? What 
are the sources 
of errors? 

[1] P. B. Kuhn et al., Proc. Combus.Inst. 33 (2011). 
[2] M.Smooke et al.,Combust.Flame143 (2005). 
[3] K. K. Foo et al., Combust. Flame 181 (2017).  

λlaser : 532 nm  1064 nm 
λdet  : 405 ± 35 nm  435 ± 24 nm 
tinit  : 0 ns  0 ns 
tend  : 23 ns  40 ns   



4 Content

•  Experimental Setup (LII and MAE)

•  Soot volume fraction comparison

•  TiRe-LII results for primary particle 
diameter
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Modulated Absorption/Emission technique[1]

Local spectral absorption coefficient from 
incoming energy with-w/o laser/flame:   

� fv =
��

6⇡E(m)

Operating conditions 

E(m) = 0.38� = 645nm Factor 2: E(m)  

645± 2nmFilter 

Uncertainties 

2.5% (Santoro flame [1]) 
Line-of-sight measurements 
In-house deconvolution 

[1] G. Legros et al., Combust. Flame (2015). 



  4% of peak LII signal (flame variability)  
  Laser light absorption  

Only half side of results is considered 
(laser absorption) 

  Calibration procedure 
 How? Considering the first p maximum 

        How many p? p=100 in the wings of the flame 
          10% of Ccalib 

  Self-absorption of LII signal 
5% in the middle of the flame 5 

Laser Induced Incandescence (LII)
Operating conditions 

� = 1064nm

Filter 425± 25nm

0.45 J/cm2
Laser 

(9ns) 
t0 = 0ns
�t = 25ns

Camera 

Uncertainties 
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[1] P. B. Kuhn et al., Proc. Combus. Inst. 33 (2011). 
[2] M.Smooke et al., Combust. Flame.143 (2005). 6 

Comparison on fv with state-of-the-art data[1,2]

  Flame length variability 
Operating conditions effect? 

  Similar qualitative trend 
 High fv in wings 

  Different max. values 
YALE-PYRO: 4.3 ppm 
YALE-LII: 4.0 ppm 
MAE: 4.6 ppm 
LII: 5.0 ppm 
LIIabsorp: 5.1 ppm 
 

25 % 
difference !! 

[1] [2] 

fv [ppm] 

Present work YALE 

è Impact of calibration technique 
and post-processing? 



7 

LII VS MAE
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FIRST-TIME COMPARISON BETWEEN MAE AND LII 
Similar trends  
  Good agreement in wings (calibration zone) but discrepancies on 
centerline 
MAE deconvolution error? 

   Small differences between LII and LIIabsorp  
Auto-absorption is negligible here (low optical thickness) 
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LII VS LII-YALE[1]

COMPARISON ON LII RESULTS FROM TWO TEAMS 
Relevant differencies due to: 
  Experimental uncertainties? 
  Different flame lengths ? 
  Choice of laser wavelengths for LII ? 

  Choice of E(m)? 
  LII filter? 
  Calibration technique?  

Qualitative agreement 
among techniques and 
teams BUT quantitative 
differences!!! � = 1064nm vs � = 532nm

E(m) = 0.38nm vs E(m) = 0.45nm

[1] P. B. Kuhn et al., Proc. Combus.Inst. 33 (2011). 



Time-resolved LII for primary particles dp
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  PPSD (primary particle size 
distribution) varies in space 

 
 

Big dp particles are expected 
in the flame outer region  
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1) Look-up table from LII decay signal 
simulations (LIISim-Web tool) 

2) dp is choosen so that it minimizes 

⌧ij = (ti � tj)/(ln(Ij) � ln(Ii))with 

Largest dp in wings, smallest dp on centerline.
Results depend on (i,j): high gating delays to avoid vaporization effect but 
information on smallest dp may be lost (black regions) 
è this choice depends on investigated PPSD.

Assumptions:
•  T=1700 K 
•  Spherical particles
•  Monodisperse

F(dp) = [⌧ expij � ⌧mod

ij (dp)]
2

⌧mod

ij (dp)

LIISim-Web available at http://web.liisim.com/ (Updated 2016). 
M. Hofmann et al, ECM (2017). 

Monodisperse reconstruction



Mono 

Polydisperse reconstruction
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1. Look-up table from LII decay 
signal simulations (LIISim-Web tool) 

Comparing mono and poly: 
   Higher dp for mono in wings (where σ is high = poly PPSD) 
   Similar dp in centerline (where σ is small = mono PPSD) 

Assumptions: 
•  T=1700 K 
•  Spherical particles 
•  Presumed log-normal PPSD population 

2. dp, σ  are choosen so that they 
minimize 

F(dp,�) = [⌧ exp

ij � ⌧mod

ij (dp,�)]2

⌧mod

ij (dp,�)

Uncertainties[1]: •  Const. temperature: 4% τ 
•  Shielding effect: 30% dp and 5% σ  [1] L. Chen et al. Appl. Phys (2017). 

è Already observed on Santoro flames[1] 



Effect of dilution
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  32%-40%: Homogeneous dp, small σ è monodisperse PPSD
  60%-80%: High dp, high σ in wings è polydisperse PPSD

[1] K. K. Foo et al., Combust. Flame (2017)  

COMPARISON ON 32% CASE 
Adelaide[1]: 50 nm 
Here: 30 nm

Measurements? 
Post-processing?  
LII models for table?  

TEM (80%): dp < 50nm   

Raw data should always be 
provided to allow pertinent 
comparisons 

reconstruction reconstruction



CENTERLINE 

LII 

TEM 

TR-LII vs TEM (Transmission Electron Microscopy)[1]

13 
[1] N.J. Kempema et al, Appl. Phys. B  (2016). 
[2] L. Chen et al. Appl. Phys (2017). 

  Qualitative agreement with LII 
  LII overestimates dp and σ vs 
TEM (better agreement with 
poly than mono) 

UNCERTAINTIES: 

  Shielding effect: 30% dp and 5% σ
  PPSD is log-normal? 
  Effective dp (LII) vs measured dp 
(TEM) 



15 Conclusions
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  Qualitative agreement among techniques and results obtained by 
different research teams for fv but quantitative differences 
dp correlates with fv: by increasing fuel flow rate, dp and σ increase;  
With monodisperse assumption, dp field is qualitatively retrieved but 
its value is largely overestimated;  
  High variability of PPSD with diagnostics and post-processing 

methods.  
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•  Need for a cross comparison between multiple data 
sets  
è consistent database for sooting flames 

•  Provide access to measured, post-processed and 
modeled signals  
 è better understanding of the discrepancies 



16 Conclusions
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Accounting for self-absorption of LII signal
Deconvolution process 
inspired from MAE technique  

Id4l = Ie4l exp

 
�

6X

m=4

AOP
4mkml

!LASER 

Correcting the detected LII signal 
knowing the absorption field from fv  
with an iterative procedure 

detected emitted 
optical path length absorp. coeff.  

•  Signal has to be recalibrated 
(Ccalib varies of 10%)   

•  10% modification of fv  
 è neglected in the following 

f corr

v /fd

v

[1] M. Roussillo et al., ECM (2017). r [cm] 



18 Flame sensitivity is a first source of errors
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  Flow rate uncertainties:  
mass flow rate from inner diameter, bulk velocity  
and mass flow rate controller 
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4% flow rate è 6 mm flame length=10 %  

  Mass flow rate:  
  275 vs 286 g/min 

Inner tube position with respect to air co-flow: 
Not indicated in the publications (here 0.5 mm) 

What about the experimental procedure, associated 
setup and data post-processing? 

drealf = 3.9mm 6= dnomf = 4.0mm

Flame flickering: 4% flame luminosity 



9 [1] P. B. Kuhn et al., Proc. Combus.Inst. 33 (2011). 

Comparison on T with state-of-the-art data[1]
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constant 
soot opt. 
prop. 

2C-pyrometry from 
MAE fields   
PYRO-MAE  
�1 = 645nm,�2 = 785nm

It accounts for soot self-
absorption 

Similar results with pyrometry (~100 K) 
  PYRO-DIG on a wider radial region (already observed for new LII) 
  PYRO-MAE needs high fv to obtain kλ è smaller detection region 
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9 [1] P. B. Kuhn et al., Proc. Combus.Inst. 33 (2011). 

Color ratio pyrometry 
using a digital camera  

PYRO YALE  
PYRO DIG 
R-PYRO YALE 

constant 
soot opt. 
prop. 

2C-pyrometry from 
MAE fields   
PYRO-MAE  

Comparison on T with state-of-the-art data[1]

Similar results with pyrometry (~100 K) 
  PYRO-DIG on a wider radial region (already observed for new LII) 
  PYRO-MAE needs high fv to obtain kλ è smaller detection region 
  MAE: high T in the wings (from simulations T<2150 K)  

 è affected by low optical thickness and sharp T gradients here 
(N.B.: MAE validation on Santoro flame -> smoother gradients) 

MAE technique 
No calibration or modeling 
to correlate fv and kλ 



TR-LII vs TEM (Transmission Electron Microscopy)[1]

13 
[1] N.J. Kempema et al, Appl. Phys. B  (2016). 
[2] L. Chen et al. Appl. Phys (2017). 

  TEM: Higher dp and σ in wings than 
centerline 

-qualitative agreement with LII 
  LII overestimates dp and σ vs TEM 

(better agreement with poly than mono) 

UNCERTAINTIES: 
  Position of TEM probe:  

  0.5 mm in r è 30% dp  
  Shielding effect: 30% dp and 5% σ
  PPSD is log-normal? 
  Effective dp (LII) vs measured dp (TEM) 

Similar to results obtained on  
     the Santoro flame[2] 
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TEM 

WINGS 
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TEM 


