

Journées d'études en rayonnement thermique (JERT2018)

Modélisation de la propagation d'un laser dans un tissu biologique par la méthode de Monte Carlo

O. Farges¹, F. Asllanaj^{1,2}

¹Université de Lorraine, LEMTA, UMR 7563, Vandoeuvre-lès-Nancy, France ²CNRS, LEMTA, UMR 7563, Vandoeuvre-lès-Nancy, France

Jeudi 22 Novembre 2018

Autres travaux

Recours à MMC

Autres travaux

Recours à MMC

 Méthode de diagnostic non-invasive

- Méthode de diagnostic non-invasive
- Pénétration du laser
 > 1 cm

- Méthode de diagnostic non-invasive
- Pénétration du laser
 > 1 cm
- ⊙ Laser diffusé

- Méthode de diagnostic non-invasive
- Pénétration du laser
 > 1 cm
- Laser diffusé
- Laser absorbé

- \circ Cellules **tumorales** vs Cellules **saines** ⇒ propriétés optiques affectées :
 - ▷ Cellules **tumorales** : fortement vascularisées \Rightarrow absorption impactée (k_a)
 - ▷ Cellules **tumorales** : noyaux plus gros \Rightarrow diffusion impactée (k_s et g)

- \circ Cellules **tumorales** vs Cellules **saines** ⇒ propriétés optiques affectées :
 - ▷ Cellules **tumorales** : fortement vascularisées \Rightarrow absorption impactée (k_a)
 - ▷ Cellules **tumorales** : noyaux plus gros \Rightarrow diffusion impactée (k_s et g)

Modélisation de la propagation du laser par l'ETR

Celèmba

- \circ Cellules **tumorales** vs Cellules **saines** ⇒ propriétés optiques affectées :
 - ▷ Cellules **tumorales** : fortement vascularisées \Rightarrow absorption impactée (k_a)
 - ▷ Cellules **tumorales** : noyaux plus gros \Rightarrow diffusion impactée (k_s et g)

- Travaux de F. Asllanaj et thèse de A. Addoum (LEMTA)
- Résolution de l'ETR dans le domaine fréquentiel par la méthode des volumes finis modifiés (MVFm)
- Algorithme de reconstruction par une méthode de Quasi-Newton et l'ETR adjointe résolue par MVFm à partir du flux rétrodiffusé

5

5

en 3D

Pour 1 seule fréquence 600 MHz

5

en 3D

Pour 5 fréquences de modulation 100 MHz à 1000 MHz

Autres travaux

Recours à MMC

⊙ Données obtenues pas MVFm

- ⊙ Données obtenues pas MVFm
- Reconstruction par MVFm

- ⊙ Données obtenues pas MVFm
- Reconstruction par MVFm
- \odot Recours à une autre méthode pour évaluer la robustesse de l'algorithme de reconstruction \Rightarrow Méthode de Monte Carlo

• Milieu absorbant et diffusant

- Le milieu a des propriétés optiques hétérogènes : problème pour échantillonner les libres parcours (distances entre 2 évènements)
- ⊙ alternatives courantes :
 - discrétisation spatiale du milieu
 - échantillonnage des épaisseurs optiques (mais problème de non linéarité dans l'expression statistique de l'ETR)
- $\odot \Rightarrow$ algorithmes à collision nulle : Mis en œuvre pour des milieux gazeux hétérogènes¹

^{1.} Mathieu GALTIER. « Approche statistique du rayonnement dans les milieux gazeux hétérogènes : de l'échantillonnage des transitions moléculaires au calcul de grandeurs radiatives ». Thèse de doct. Ecole nationale des Mines d'Albi-Carmaux, 2014.

 \odot Addition arbitraire d'un champ positif de collision nulle k_n

$$\hat{k} = k_a + k_s + k_n$$

- Création d'un évènement qui est une simple diffusion vers l'avant
- On échantillonne les longueurs de diffusion selon un coefficient constant dans l'espace

MMC et collisions nulles

Trois évènements

- $\odot~$ Cube de dimension $4\,\text{mm}\times4\,\text{mm}\times4\,\text{mm}$
- $\odot~$ Inclusion tumorale : sphère de diamètre 0,5 mm placée en $(x=3\,,y=3\,,z=3)$
- \odot Source : pulse laser gaussien
- Propriétés : $k_{a,s} = 0.01 \text{ mm}^{-1}$, $k_{s,s} = 2 \text{ mm}^{-1}$, $k_{a,t} = 0.02 \text{ mm}^{-1}$, $k_{s,t} = 4 \text{ mm}^{-1}$ et g = 0.8 (fonction de phase H.G.)
- Algorithme MC développé avec Star-engine
- $\odot\,$ Comparaison du flux rétrodiffusé en $y=0\,,z=4$

• Recours à collision nulle en milieu biologique vs milieux gazeux

Autres travaux

Recours à MMC

De fortes hétérogénéïtés :

- Vaisseaux sanguins,
- ▷ Glandes,
- ▷ Folicules, ...

La peau : Schéma général

- \odot Données disponibles pour k_a , k_s et g peu nombreuses
- Variation d'une personne à l'autre, d'un moment de la journée à l'autre, ...

- \odot Données disponibles pour k_a , k_s et g peu nombreuses
- Variation d'une personne à l'autre, d'un moment de la journée à l'autre, ...
- Valeurs constantes pour zone saine et zone tumorale?

- \odot Données disponibles pour k_a , k_s et g peu nombreuses
- Variation d'une personne à l'autre, d'un moment de la journée à l'autre, ...
- Valeurs constantes pour zone saine et zone tumorale?
- Utilisation de MMC pour propagation d'une incertitude « *de mesure* »

- Rappel : $k_{a,s} = 0.01 \text{ mm}^{-1}$, $k_{s,s} = 2 \text{ mm}^{-1}$, $k_{a,t} = 0.02 \text{ mm}^{-1}$, $k_{s,t} = 4 \text{ mm}^{-1}$
- Écart-type pour chaque grandeur : $\sigma = 2,5 \% \times k_{x,x}$ et $\sigma = 5 \% \times k_{x,x}$
- Valeurs échantillonnées selon une distribution gaussienne
- $\odot~\hat{k}$ fixé à $+5\sigma$

Effets des incertitudes

Effets des incertitudes

Effets des incertitudes

- Reconstruction à partir des valeurs « bruitées »
- Utilisation MMC pour reconstruction (sensibilité du flux rétrodiffusé aux paramètres)

Autres travaux

Recours à MMC

• Traitement par hyperthermie induite par laser (HTL)

- ▷ Effets thermiques induits par une source laser
- Modéliser les transferts de chaleur
- Comprendre le phénomène de dénaturation dans les tissus vivants
- ⊙ Projet BioPAC
- Imagerie photoacoustique

- Traitement par hyperthermie induite par laser (HTL)
- ⊙ Projet BioPAC
 - Bio-printing d'organoïdes
 - Utilisation de cellules saines et cellules tumorales
 - Géométrie maitrisée
 - Traitement par HTL et photothérapie dynamique (PDT)
 - ▷ 4 labos : IJL, LRGP, ERPI, LEMTA
- Imagerie photoacoustique

- Traitement par hyperthermie induite par laser (HTL)
- ⊙ Projet BioPAC
- Imagerie photoacoustique
 - Ondes acoustiques induites dans un objet illuminé par un laser
 - Détection d'utrasons (échographie)

Merci pour votre attention

