Research Topics

Spaceship entering Earth's atmosphere

Atmospheric Entry

Atmospheric entry is the last part of a space mission when the spacecraft enters the atmosphere of a planet. During the entry, the heat shield of the capsule experiences high conductive and radiative heat flux. The radiative heat flux emitted by the gas around the spacecraft is still very difficult to predict for high-velocity entries, above 11 km/s on Earth from asteroids, Mars, or the Moon for example.

Our team is working both experimentally and theoretically to improve and validate kinetic and radiation models to predict the radiative heat flux with more confidence and help space agencies (ESA, NASA) and companies (ArianeGroup) to optimize the design of their spacecrafts. Using our plasma torch, we can generate a representative plasma at atmospheric pressure and temperatures from 3000 to 8000 K. The gas mixture injected in the plasma torch can be adapted to match the composition of the different atmospheres in our solar system (Earth, Mars, Titan, Neptune, etc…). A large optical access allows us to perform detailed optical diagnostics to measure physical quantities. We also develop kinetic and radiation models that are validated against our experimental results.

Capillaire

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla varius, est id maximus vehicula, tortor lacus pretium ligula, a eleifend eros lorem et enim. Donec pellentesque molestie nibh, ut dictum est congue sit amet. Etiam et libero ligula. Fusce eget tempus libero, sit amet scelerisque felis. Duis congue, nisi fringilla suscipit fringilla, neque mi tristique dolor, in semper tellus lorem ac purus. Cras pretium euismod lorem, vel molestie augue. Sed malesuada orci justo, eget consectetur erat posuere id. Integer eget mollis ipsum, sed ornare leo. Donec in urna nibh. Suspendisse varius, tellus eu sodales sollicitudin, nisi est scelerisque est, ac condimentum lectus velit et odio. Nulla venenatis imperdiet nibh in placerat. Vivamus eleifend tellus dolor, id tristique ligula pretium quis. Donec in ultrices ex. Ut gravida luctus neque, vitae egestas sem consequat eu. Vivamus a neque eu leo placerat suscipit. Ut convallis porta augue, eget euismod enim fringilla at. Donec.

Capillaire
Plasma Assisted Combustion

Plasma Assisted Combustion

At EM2C, we use Nanosecond Repetitively Pulsed (NRP) discharges to induce strong thermal, chemical, and hydrodynamic effects to flammable mixtures. These three effects have a positive impact on improving the ignition, the extinction limit, and the dynamic performance of combustion systems. Our study aims to (i) understand the fundamental mechanisms at stake in NRP discharges and (ii) to demonstrate efficient industrial application. Fundamental aspects of plasma-assisted combustion are studied with the simulation of an academic experiment by the Combustion Team of EM2C and with diverse diagnostics such as laser-induced fluorescence, Rayleigh scattering, optical emission spectroscopy, Schlieren. The application of NRP discharges has been efficiently applied to 10-kW burners at EM2C with an electrical power of approx. 1 % of the flame thermal power. The next challenge is to demonstrate the same concept on a 200-kW burner at EM2C (BIMER2-PAC) and at ONERA in collaboration with A. Vincent.

Nitrogen Dissociation

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed rutrum eget ligula a dapibus. Proin pharetra faucibus urna, non hendrerit leo venenatis et. Donec libero ante, elementum et dolor quis, viverra egestas dui. Cras dapibus molestie magna, scelerisque porttitor tellus. Maecenas cursus ut turpis sit amet efficitur. Cras volutpat ante quis ante feugiat vehicula. Quisque ullamcorper justo eros, ac porta ligula dapibus et. Donec malesuada in orci nec iaculis. Cras mattis sagittis elit.

Integer cursus sapien nec ligula sollicitudin suscipit. Quisque non nisl rutrum, posuere mauris gravida, dignissim velit. Sed posuere turpis in nibh sollicitudin, vitae lobortis mi varius. Maecenas molestie nibh dui, nec ullamcorper nisi ornare sed. Ut hendrerit viverra velit id porta. Cras egestas sapien quis ligula pharetra tincidunt. In dapibus, lorem a elementum sagittis, risus quam dapibus lectus, eu aliquam ligula mauris ac tortor. Curabitur mattis volutpat hendrerit. Integer sit amet molestie diam. Duis dapibus mauris erat, ac consequat lectus vulputate id. Curabitur vitae ex ac quam ultricies commodo. Nulla facilisi. Aliquam lacus lorem, pulvinar vel convallis quis, maximus lobortis mi. Etiam ante eros, dictum quis semper in, gravida eu eros. Quisque condimentum tortor et ex hendrerit, quis condimentum justo ultricies. Nulla vel massa sit amet nunc.

Calibration Cellule

CO2 Dissociation

We use non-equilibrium plasmas to convert green-house gases into value-added products.

The project scope includes the measurement of the energy efficiency of the process for industrial applications, the kinetic modeling of the reaction to improve the efficiency, and in-situ measurements to calibrate the kinetic models.

In-situ, time-resolved measurements are performed with visible and infrared emission spectroscopy, and laser diagnostics.

Kinetic models have been developed that include 0-D, vibrational specific kinetic mechanisms with an emphasis on the modeling of electronic states.

The project also resulted in a spin-off project from the Lab, Spark-Cleantech, where hydrogen is produced from CO2 - CH4 mixtures.